On the Crystal Chemistry of Salt Hydrates. V. The Determination of the Crystal Structure of CuSO₄. 3H₂O (Bonattite)

BY ROBERT F. ZAHROBSKY AND WERNER H. BAUR

University of Illinois at Chicago Circle, Chicago, Illinois 60680, U.S.A.

(Received 10 April 1967)

CuSO₄. 3H₂O crystallizes in space group Cc with a=5.592, b=13.029, c=7.341 Å, $\beta=97^{\circ}3'$, Z=4. The structure has been determined from Patterson and Fourier syntheses using three-dimensional data collected on a precession camera with Mo K α radiation. The structure was refined by the method of least squares. The final R value for 936 observed structure factors is 0.069. The coordination polyhedra around the Cu²⁺ ions do not share any edges or corners with each other; they are connected by hydrogen bonds and via linking sulfate groups. The square planar coordination around the copper ion consists of three water oxygen atoms and one sulfate oxygen atom at an average distance of 1.96 Å. Two more sulfate oxygen atoms at 2.40 and 2.45 Å complete the distorted octahedral coordination. The average S-O bond length in the sulfate tetrahedron is 1.472 Å. The positions of the hydrogen atoms were not determined experimentally; they were calculated theoretically assuming that the hydrogen atoms are in positions of least electrostatic energy. Only four of the six crystallographically non-equivalent hydrogen atoms are involved in normal hydrogen bonds.

Introduction

Copper(II) sulfate trihydrate is the stable solid phase between 95.0 and 116.6 °C in contact with a saturated solution of CuSO₄ (Collins & Menzies, 1936). It has recently been found as a naturally occuring mineral and has been named bonattite (Garavelli, 1957). Copper(II) sulfate trihydrate belongs to a series of compounds $M^{2+}SO_4.nH_2O$, where M^{2+} is a cation with an approximate ionic radius of 0.7 Å. In this series (Mg, Cr, Mn, Fe, Co, Ni, Cu, Zn) only copper is known beyond doubt to form a stable trihydrate. Sulfates of copper(II) also occur as the mono- and pentahydrates. The present investigation has been undertaken as part of a systematic study of the crystal structures of metal sulfate hydrates [previous paper in this series, Baur (1964)].

Experimental

Blue crystals of $CuSO_4.3H_2O_5$, up to 1 cm in their longest dimension, were grown at 105°C from an aqueous solution of CuSO₄. Crystal plates (0.2×2.0) $\times 2.0 \text{ mm}^3$) were ground approximately perpendicular to [001] and [010]. The zero through third layer perpendicular to [001] and the zero through fifth layer perpendicular to [010] were recorded with Zr-filtered Mo $K\alpha$ radiation on a precession camera using the multiple exposure technique. On these layers, 610 unique reflections were estimated visually by comparing them with a calibrated strip. These data were used in the calculation of Patterson and Fourier syntheses, and in the early stages of refinement. It was observed that the anomalous absorption effects were pronounced. Therefore in the later stages of the refinement each F_{hkl} and its corresponding $F_{\bar{h}\bar{k}\bar{l}}$ were counted as separate unique reflections. Since the data did not include all F_{hkl} , F_{kkl} pairs, this procedure only increased the number of data to 936 unique reflections. The cell constants were derived from the precession photographs assuming Mo $K\alpha$ (mean)=0.7107 Å.

Crystal data

Copper(II) sulfate trihydrate is monoclinic, with $a = 5.592(5)^*$, b = 13.029(10), c = 7.341(6) Å, $\beta = 97^{\circ}3(7)'$; V = 531(1) Å³, Z = 4, $D_x = 2.68$ g.cm⁻³, $D_{obs} = 2.663$ g.cm⁻³ (Thorpe & Watts, 1880), F.W. 213.65. According to the systematic absences (*hkl* only present with h + k = 2n, *hol* only with l = 2n) the space groups *Cc* or *C2/c* are possible. Since Scacchi (1870) found the crystals to be domatic, *Cc* is the obvious choice. This was proved to be correct by the observation of significantly different intensities in Friedel pairs and by the subsequent determination of the structure. The *a:b:c* calculated from the above cell constants is 0.4292:1:0.5634. Scacchi found from optical measurements a:b:c = 0.4321:1:0.5523 and $\beta = 96^{\circ}25'$.

Determination of the structure

From the three-dimensional Patterson synthesis the positions of Cu and S could be derived. A structure factor calculation including these two atoms yielded an R of 0.24. In two successive Fourier syntheses all the oxygen atoms could be found. The structure was then refined by least-squares methods to R=0.069 for all observed reflections. When the 40 strongest reflections, which seem to be affected by extinction, are

^{*} Throughout this paper the estimated standard deviations are given in parentheses following the value. They correspond to the last significant digits of these values.

omitted, R is 0.05. These strong F_{hkl} were given zero weight in the least-squares refinement, the other F_{hkl} were weighted according to Hughes's (1941) scheme. In Tables 1 and 3 the final parameters are presented. None of the parameters are involved in high correlations. The thermal parameters for O(1) and O(2) are not positive definite, but slight changes (smaller than one standard deviation) in B_{22} and B_{23} for O(1), and in B_{22} for O(2), would remove this condition. The form factors used for the F_c calculation were taken from International Tables for X-ray Crystallography (1962). The observed and calculated structure factors are listed in Table 4. The hydrogen atom positions could not be determined experimentally. The peaks found in the difference synthesis near the positions where hydrogen atoms are expected are approximately half as large as the largest background peaks.

Table 1. Positional parameters and their standard deviations

	x	у	Z
Cu	0.5000	0.3640 (1)	0.2000
S	0.2643 (2)	0.1115 (1)	0.4168 (2)
O(1)	0.1618 (10)	0.1639 (5)	0.2446 (7)
O(2)	0.8319 (9)	0.3057 (5)	0.0505 (6)
O(3)	0.4788 (9)	0.0536 (5)	0.3805 (8)
O(4)	0.0866 (8)	0.9562 (5)	0.9825 (7)
O(W1)	0.3360 (9)	0.3725 (4)	0.2462 (8)
O(<i>W</i> 2)	0.6940 (8)	0.0911 (4)	0.0809 (7)
O(W3)	0.7840 (7)	0.3041 (5)	0.4103 (6)

 Table 2. Parameters of hydrogen atom positions

 calculated to have the least electrostatic energy

	x	У	Z
H(11)	0.428	0.397	0.151
H(12)	0.174	0.355	0.192
H(21)	0.635	0.093	0.200
H(22)	0.604	0.040	0.003
H(31)	0.930	0.276	0.476
H(32)	0.795	0.304	0.280

Discussion of the structure

Fig. 1 shows the main features of the structure. The coordination polyhedra around the copper atoms do not share any edges or corners with each other; they are connected by hydrogen bonds and by linking sulfate groups. The square planar coordination around

the copper atom consists of 3 water oxygen atoms and the oxygen atom O(1) from the sulfate group. This grouping may be considered as the building block of the structure, since all the short strong bonds are contained in it. It is connected to neighboring units *via* hydrogen bonds and the long Cu-O bonds which, when combined with the square planar configuration, complete the distorted octahedron.

The coordination polyhedron around Cu^{2+} is typical of the arrangement found in light blue copper(II) compounds. The mean of the short Cu–O distances in the square planar coordination is 1.96 Å. The mean of the two long distances is 2.42 Å. The corresponding figures for CuSO₄. 5H₂O are 1.97 and 2.41 Å (Bacon & Curry, 1962). The square planar coordination is not as ideal as the name might imply: the four sides, of the square are O(1)–O(W2) 2.90 Å, O(W2)–O(W1) 2.72 Å, O(W1)–O(W3) 2.79 Å and O(W3)–O(1) 2.66 Å, and the four oxygen atoms and the central copper(II) atom are not exactly in one plane. The sides of the square resemble a rectangle with a mean length of the two longer sides of 2.85 Å, and of the two shorter sides of 2.69 Å.

The shape of the sulfate group is essentially the same as was found in a series of very accurate structure determinations of sulfate compounds. The mean value of 1.472 Å for the four S–O distances is not significantly different from the mean of 20 previously determined S–O distances which is 1.473 Å (Baur, 1964). The distance S–O(1) is significantly longer than the mean value, which is probably correlated to the fact that O(1) participates in the square planar coordination around the copper(II) atom.

A calculation of the positions of least electrostatic energy of the hydrogen atoms resulted in the parameter values given in Table 2. The calculation was performed in the same way as for CuSO₄.5H₂O (Baur, 1965). The charges assumed on the different atoms were: copper +2·0e, sulfur 0·0e, sulfate oxygen -0.5e, water oxygen -1.0e, hydrogen +0.5e. The shape of the water molecule was held constant in these calculations (angle H–O(W)–H=109·5°, O(W)–H=0·97 Å). The results of this calculation show clearly that O(W1)–H(11)–O(4), O(W2)–H(21)–O(3), O(W2)– H(22)–O(3) and O(W3)–H(32)–O(2) are more or less normal straight hydrogen bonds. The assumed hydro-

Table 3. Thermal parameters and their standard deviations

140		p			
$\exp\left[-\frac{1}{4}(h^2a)\right]$	The definition o $a^{*2}B_{11} + k^2b^{*2}B_2$	f the Debye–Wa $_2 + l^2c^{*2}B_{33} + 2hl$	ller temperature fa $ka^*b^*B_{12} + 2hla^*c^*$	ctor is: $B_{13} + 2klb^*c^*B_{23}$].	
<i>B</i> ₁₁	B ₂₂	B ₃₃	B_{12}	B ₁₃	B ₂₃
0.65 (2)	0.71(3)	0.44(2)	-0.17(2)	0.09 (2)	-0.04(4)
0.52(4)	0·38 (4)	0·46 (4)	-0.05(3)	0.09 (3)	-0.06(6)
2.02 (17)	0.55 (15)	0.56 (17)	-0.05(15)	-0.56(15)	0.65 (19)
1.88 (15)	0.91 (17)	0.61(12)	0.77 (15)	-0.10(13)	0.56 (22)
1.40 (14)	2.07 (24)	1.49 (17)	0.99 (17)	0.82 (14)	0.66 (24)
1·24 (13)	1.14 (17)	1.64 (16)	0.39 (15)	0.81 (13)	-0.15 (22)
1.05 (14)	1.06 (18)	0.92(17)	-0.07(15)	0.18 (15)	0.13 (20)
1.27 (14)	0.90 (15)	0.71(12)	-0.32(13)	0.55 (12)	-0.01(22)
0.75 (11)	1.98 (22)	0.66 (12)	0.31 (15)	0.25 (11)	-0.04 (25)
	$\exp \left[-\frac{1}{4}(h^2a)\right]$ $\exp \left[-\frac{1}{4}(h^2a)\right]$ B_{11} $0.65 (2)$ $0.52 (4)$ $2.02 (17)$ $1.88 (15)$ $1.40 (14)$ $1.24 (13)$ $1.05 (14)$ $1.27 (14)$ $0.75 (11)$	The definition o The definition o exp $[-\frac{1}{4}(h^2a^{*2}B_{11} + k^2b^{*2}B_2)$ B ₁₁ B ₂₂ 0.65 (2) 0.71 (3) 0.52 (4) 0.38 (4) 2.02 (17) 0.55 (15) 1.88 (15) 0.91 (17) 1.40 (14) 2.07 (24) 1.24 (13) 1.14 (17) 1.05 (14) 1.06 (18) 1.27 (14) 0.90 (15) 0.75 (11) 1.98 (22)	The definition of the Debye–Waexp $[-\frac{1}{4}(h^2a^{*2}B_{11}+k^2b^{*2}B_{22}+l^2c^{*2}B_{33}+2h)$ B_{11} B_{22} B_{33} 0.65 (2)0.71 (3)0.44 (2)0.52 (4)0.38 (4)0.46 (4)2.02 (17)0.55 (15)0.56 (17)1.88 (15)0.91 (17)0.61 (12)1.40 (14)2.07 (24)1.49 (17)1.24 (13)1.14 (17)1.64 (16)1.05 (14)1.06 (18)0.92 (17)1.27 (14)0.90 (15)0.71 (12)0.75 (11)1.98 (22)0.66 (12)	The definition of the Debye–Waller temperature faexp $[-\frac{1}{4}(h^2a^{*2}B_{11}+k^2b^{*2}B_{22}+l^2c^{*2}B_{33}+2hka^*b^*B_{12}+2hla^*c^*$ B_{11} B_{22} B_{33} B_{12} 0.65 (2)0.71 (3)0.44 (2) $-0.17 (2)$ 0.52 (4)0.38 (4)0.46 (4) $-0.05 (3)$ 2.02 (17)0.55 (15)0.56 (17) $-0.05 (15)$ 1.88 (15)0.91 (17)0.61 (12)0.77 (15)1.40 (14)2.07 (24)1.49 (17)0.99 (17)1.24 (13)1.14 (17)1.64 (16)0.39 (15)1.05 (14)1.06 (18)0.92 (17) $-0.07 (15)$ 1.27 (14)0.90 (15)0.71 (12) $-0.32 (13)$ 0.75 (11)1.98 (22)0.66 (12)0.31 (15)	The definition of the Debye–Waller temperature factor is:exp $[-\frac{1}{4}(h^2a^*B_{11}+k^2b^*B_{22}+l^2c^*B_{33}+2hka^*b^*B_{12}+2hla^*c^*B_{13}+2klb^*c^*B_{23})].$ B_{11} B_{22} B_{33} B_{12} B_{13} 0.65 (2) 0.71 (3) 0.44 (2) -0.17 (2) 0.09 (2) 0.52 (4) 0.38 (4) 0.46 (4) -0.05 (3) 0.09 (3) 2.02 (17) 0.55 (15) 0.56 (17) -0.05 (15) -0.56 (15) 1.88 (15) 0.91 (17) 0.61 (12) 0.77 (15) -0.10 (13) 1.40 (14) 2.07 (24) 1.49 (17) 0.99 (17) 0.82 (14) 1.24 (13) 1.14 (17) 1.64 (16) 0.39 (15) 0.81 (13) 1.05 (14) 1.06 (18) 0.92 (17) -0.07 (15) 0.18 (15) 1.27 (14) 0.90 (15) 0.71 (12) -0.32 (13) 0.55 (12) 0.75 (11) 1.98 (22) 0.66 (12) 0.31 (15) 0.25 (11)

Table 4. Observed and calculated |F| multiplied by 10

The 40 $|F_o|$ which were omitted from the least-squares refinement are marked by a minus sign.

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

gen bond between O(W1) and O(2) is rather long $(3\cdot13 \text{ Å})$ and, in the absence of further evidence, its existence cannot be taken as completely proved. The distance H(12)-O(2) is calculated to be $2\cdot16 \text{ Å}$. A comparable distance is reported for the H---O separation in a hydrogen bond in natrolite (Torrie, Brown & Petch, 1964) where it was established by neutron diffraction to be $2\cdot13 \text{ Å}$. The O(W)-O distance in the case of natrolite is $3\cdot01 \text{ Å}$, and the bond is bent $(\angle O(W)-H--O=154^{\circ})$. Atom O(1) is nearer to O(W1) ($2\cdot89 \text{ Å}$) than is atom O(2). However, it is not likely to correspond to a hydrogen bond since H(12)-O(1) is calculated to be $2\cdot52 \text{ Å}$ and therefore is too long to be considered a hydrogen bond. Also, the

Cu–O(W1)–O(1) angle is 94°, which means in this case that the plane containing the hydrogen bonds would almost make a right angle with the bond direction Cu–O(W1). Such an arrangement is extremely unlikely. The only oxygen atom, except O(2), which is within hydrogen bonding distance from O(W3) is atom O(W2) at a distance of 2.83 Å. The distance H(31)– O(W2) however is 2.35 Å, while the angle O(W3)– H(31)–O(W2) is 110°. The angle O(W3)–H(31)–O(2) is 163° hence, closer to the ideal value of 180°, but in this case H(31)–O(2) is even longer (2.48 Å). It appears that atom H(31) does not participate in any hydrogen bonding. Fig.2 shows the proposed hydrogen bonding scheme for CuSO₄.3H₂O.

Fig. 1. CuSO₄.3H₂O, schematic projection parallel to [100]. The numbers in the circles representing the atoms are the x parameters of these atoms. Dashed lines lead to neighboring atoms of the hydrogen atoms, but do not necessarily represent hydrogen bonds.

Based on their structure determination of $CuSO_4.5H_2O$, Beevers & Lipson (1934) proposed a theory to explain the successive stages of dehydration observed in the copper sulfate hydrates. They assumed that the pentahydrate, when dehydrated, loses the water molecules around one of the two crystallographically different copper atoms, while the fifth water molecule which is not bonded to a copper atom remains in its tetrahedral coordination. This theory is not valid, as the structure of CuSO₄.3H₂O proves. Beevers & Lipson further assumed that upon dehydration of

the trihydrate the monohydrate is formed in such a way that the remaining water molecule is again not coordinated to a cation. According to Coing-Boyat & LeFur (1966) CuSO₄. H₂O is isostructural with MgSO₄. H₂O (Leonhardt & Weiss, 1957), and thus the water molecule should be coordinated to two copper atoms, again in contradiction to Beevers & Lipson's hypothesis.

The authors wish to thank the Office of Saline Water, U.S. Department of the Interior, for aiding this study

Table	5.	Interatomic	distances	and	bond	angles
1 a Olo	<i>~</i> .	111101 41011110	annances	unu	00114	un con

(a) Coordination a Distances	round Cu ²⁺		
C_{11} – $O(1)$	1.943 (5) Å		
Cu-O(2)	2.448(6)		
Cu-O(4)	2.399 (6)		
Cu-O(W1)	1.976 (7)		
Cu-O(W2)	1.968 (5)		
Cu-O(W3)	1.955 (5)		
Mean of short			
bonds Cu–O	1.961		
Mean of long			
bonds Cu–O	2.424		
Distances		Angles	
O(1) O(1/1)	2.010 (9)	O(1) $O(1/2)$	172.4 (0.2) 9
O(1) - O(W1)	3.910 (8)	$O(1) = -Cu = O(W_1)$	1/2.4(0.3)
O(1) - O(W2) O(1) - O(W3)	2.900 (0)	$O(1) = Cu = O(W_2)$	95°7 (0°2) 86.1 (0.2)
O(1) - O(W3)	2.000(7)	$O(W_1) = O(W_2)$	87.0 (0.2)
O(W1) = O(W2)	2.789 (8)	O(W1) - Cu - O(W3)	90.4(0.2)
$O(W_{2}) - O(W_{3})$	3.016 (7)	$O(W_2) - C_1 - O(W_3)$	173.1(0.2)
0(n 2) = 0(n 3)	5 710 (7)	0(112)-00-0(113)	1/51 (02)
(b) SO ₄ -tetrahedro Distances	n		
S-O(1)	1·488 (5) Å		
S-O(2)	1.476 (5)		
S-O(3)	1.469 (5)		
S-O(4)	1.455 (5)		
Mean value	1.472		
Distances		Angles	
O(1) - O(2)	2·363 (7) Å	O(1)-S-O(2)	105·7 (0·3)°
O(1)-O(3)	2.402 (8)	O(1)-S-O(3)	108.6 (0.4)
O(1)-O(4)	2.420 (8)	O(1) - S - O(4)	110.6 (0.3)
O(2) - O(3)	2·417 (9)	O(2) - S - O(3)	110.3 (0.4)
O(2) - O(4)	2.410 (8)	O(2) - S - O(4)	110.6 (0.3)
O(3) - O(4)	2.407 (7)	O(3) - S - O(4)	110.8 (0.4)
Mean value	2.403	Mean value	109·4
(c) Hydrogen bond	d geometry	Angles	
	2 10((0) }	O(2) O(111) O(4)	107 2 (0 2) 9
O(W1) - O(2)	3·126 (8) A	O(2) - O(W1) - O(4)	$1072(0.2)^{-1}$
O(W1) - O(4)	2.731 (8)	$C_{\rm W} = O(W_1) - O(4)$	117.9(0.3) 124.0(0.2)
		Cu = O(W I) = O(2)	260.0
$\mathbf{II}(12) \mathbf{O}(2)$	2.16	O(W1) = U(12) O(2)	174 °
H(12) = O(2) H(11) O(4)	1.79	O(W1) - H(11) - O(4)	173
H(11)O(4)	1.13	0(#1)=11(11)=0(4)	175
O(W2) - O(3)	2.678 (7)	O(3) - O(W2) - O(3)	96.3 (0.2)
$O(W_2) - O(3)$	2.595 (8)	Cu - O(W2) - O(3)	113.9 (0.2)
		Cu - O(W2) - O(3)	142.9 (0.3)
		Sum	353.1
H(21)O(3)	1.75	O(W2)-H(21)-O(3)	159
H(22)–O(3)	1.63	O(<i>W</i> 2)–H(22)–O(3)	173
$O(W_3) = O(2)$	2.687 (7)	$C_{11} = C_{11} = C_{11} = C_{12} = C$	120.7 (0.2)
H(32) = O(2)	1.72	$O(W_3) - H(3_2) - O(2)$	177
	~ / •		- • •

Fig. 2. $CuSO_4$. $3H_2O$, hydrogen bonding scheme. The dashed lines from O(W3) lead to neighboring atoms, but do not represent hydrogen bonds.

through a grant. Partial support from N.S.F. grant no. G-11309 is also gratefully acknowledged.

References

- BACON, G. E. & CURRY, N. A. (1962). Proc. Roy. Soc. A 266, 95.
- BAUR, W. H. (1964). Acta Cryst. 17, 1361.
- BAUR, W. H. (1965). Acta Cryst. 19, 909.
- BEEVERS, C. A. & LIPSON, H. (1934). Proc. Roy. Soc. A 146, 570.
- COING-BOYAT, J. & LEFUR, Y. (1966). C.r. Acad. Sci. Paris, Série B, 262, 722.
- Collins, E. M. & Menzies, A. W. C. (1936). J. Phys. Chem. 40, 379.
- GARAVELLI, C. L. (1957). Atti Accad. Naz. Lincei, Cl. Sc. fis. mat. e nat. 22, 318.
- HUGHES, E.W. (1941). J. Amer. Chem. Soc. 63, 1737.
- LEONHARDT, J. & WEISS, R. (1957). Naturwissenschaften, 44, 338.
- SCACCHI, A. (1870). Rend. Accad. sci. fis. e mat., Napoli, 9, 84.
- THORPE, F. E. & WATTS, J. I. (1880). J. Chem. Soc. 37, 102.
- TORRIE, B. H., BROWN, I. D. & PETCH, H. E. (1964). Canad. J. Phys. 42, 229.

Acta Cryst. (1968). B24, 513

Structure Cristalline de Composés Antituberculeux. I. Structure Cristalline du Chlorhydrate d'Éthionamide

PAR J.C.COLLETER ET M. GADRET

Laboratoire de Cristallographie de la Faculté de Médecine et de Pharmacie et Laboratoire de Cristallographie de la Faculté des Sciences, Bordeaux, France

(Reçu le 29 juin 1967)

Ethionamide (2-ethyl-4-thiocarbamoylpyridine) hydrochloride crystallizes in the monoclinic system, space group P_{21}/c , with cell dimensions $a = 8.82 \pm 0.02$, $b = 13.51 \pm 0.02$, $c = 10.28 \pm 0.02$ Å, $\beta = 127^{\circ} \pm 20'$ and 4 molecules per cell. The refinement was carried out by least-squares calculations including anisotropic temperature factors. The final R is 0.118. The structure is built with layers of molecules parallel to (100); within these layers, the molecules are linked together by hydrogen bonds.

Introduction

Le chlorhydrate de thiocarbamoyl-4-éthyl-2-pyridine (ou d'éthionamide) a été préparé par Libermann et ses collaborateurs. Ces auteurs recherchaient une molécule active sur le B.K. isoniazidorésistant. Ils obtinrent une série de dérivés parmi lesquelles l'éthyl-2thiocarbamoyl-4-pyridine est l'un des plus actifs.

Ce produit est utilisé en thérapeutique sous forme de chlorhydrate. Les structures de l'isoniazide (base et chlorhydrate) étant connues, il nous a paru intéressant de déterminer celles des dérivés de la série de l'éthionamide, dans le but de rechercher une éventuelle corrélation entre l'activité et la structure de ces molécules. Dans un précédent travail (Colleter & Gadret, 1966) nous avons obtenu celle de la thiocarbamoyl-4-pyridine, la présente publication concerne celle du chlorhydrate d'éthyl-2-thiocarbamoyl-4-pyridine ($C_8H_{10}N_2S$, HCl).

Partie expérimentale

Par cristallisation dans l'éthanol on obtient de petits prismes monocliniques rouge orangé de dimension convenable (0,6 mm de diamètre sur 2 à 3 mm de long).

Le groupe spatial et les dimensions de la maille ont été déterminés sur des diagrammes de Bragg et de